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Abstract—Different parallel distributed-memory versions of Lower-Upper Symmetric Gauss–
Seidel (LU-SGS) method for solution of discrete equations in finite-volume framework are com-
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1. INTRODUCTION

Modern supercomputers and parallel algorithms are widely used in computational fluid dynamics
(CFD). Parallel structure of all algorithms is usually based on geometric decomposition of computational
mesh. Interprocessor data exchange pattern heavily depends on the type of the numerical method used.

Explicit numerical schemes have relatively low computational cost and require minor changes to
the serial version to make it parallel. In contrast, implicit numerical methods usually have large
computational cost per time step and more complicated structure. Such methods cannot be parallelized
straightforwardly. Nevertheless, implicit methods are popular in CFD due to their stability and
robustness. That is why many studies are devoted to improving stability and scalability of parallel
versions of implicit methods.

In present paper we consider and compare program structures of several parallel versions of Lower-
Upper Symmetric Gauss–Seidel (LU-SGS) method used to solve discrete equations in implicit finite
volume schemes applied to compressible flow equations [1–5].

The focus of the paper is on data structures and exchange patterns, which arise in different methods.
Problems concerned with optimal mesh partition and rigorous convergence analysis are out of scope of
this paper.
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2. SERIAL VERSION OF LU-SGS METHOD

We will consider the main features of the LU-SGS method as applied to the finite-volume method
for 3D compressible Navier–Stokes equations written in conservative form

∂

∂t
U+∇(F−G) = 0, F = (F1,F2,F3), G = (G1,G2,G3), (1)

where the vectors of conservative variables U, convective fluxes Fk and viscous fluxes Gk are given by

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ

ρu1

ρu2

ρu3

E

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Fk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρuk

ρu1uk + δ1kp

ρu2uk + δ2kp

ρu3uk + δ3kp

(E + p)uk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Gk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

τ1k

τ2k

τ3k

uαταk − qk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Here t is time, x = (x1, x2, x3) is the coordinates in the physical space, ρ is density, u = (u1, u2, u3) is
gas velocity, p is pressure, E is energy per unit volume of the gas mixture:

E =
p

γ − 1
+

1

2
ρ(u21 + u22 + u23), p = ρRT,

where R is the gas constant. The components of the viscous stress tensor τij and the heat flux qk are
determined by the expressions:

τik = μ

(
∂ui
∂xk

+
∂uk
∂xi

− 2

3
divu

)
, qk = −λ

∂T

∂xk
,

where T is temperature; μ and λ are viscosity and thermal conductivity coefficients, respectively.

To construct a stationary solution, we consider the implicit finite-volume Godunov-type method for
solving (1). In the spatial variables, we introduce the computational mesh consisting of cells Vi. Each
cell can be tetrahedral, pyramid-shaped, hexahedral, or prismatic; it can be formed by several triangular
or quadrilateral faces ali. By integrating (1) over a cell and passing to discrete form, we obtain the
following semi-discrete equations

∂

∂t
Ui = Ri, Ri = − 1

|Vi|
∑
l

Φli, 1 ≤ i ≤ Ntot, Φli =

∫

ali

nl · (F−G)da. (2)

Here Ui is the cell average value, Φli is the numerical flux for the face l, nl is the outward unit normal to
the face l.

Note that Ri ≡ 0 for the stationary solution. The convective part of flux is computed numerically, the
specific form of the scheme is irrelevant in the context of the present paper. To find the viscous part of
the numerical flux, we directly approximate the derivatives using the values of the solution at the centers
of the adjacent cells and at the vertices of the face. The unknown values at the face vertices are found by
averaging over adjacent (with respect to the face) cells with the geometric weights proportional to the
distance from the vertex to the cell center. This approach is an extension of [6].

By approximating the time derivative in the semi-discrete scheme (2) by backward differences, we
obtain the following implicit one-step scheme on the arbitrary spatial mesh:

ΔUi

Δt
= Rn+1

i , ΔUi = Un+1
i −Un

i .

The linearization with respect to time yields the following expression in the cell i:(
I− ∂Rn

i

∂U

)
ΔUi = ΔtRn

i . (3)
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While the numerical flux is linearized, we will take into account its dependence on the values of
U in the cell i and its immediate neighbor σl(i) on the face l, which corresponds to the upwind first-
order spatial scheme. Next, to approximate the numerical fluxes on the left-hand side of scheme (3) the
modified Rusanov flux is used [4]:

f(Q−,Q+) =
1

2
(F(Q−) + F(Q+))− 1

2
v̂(Q+ −Q−),

v̂ = max
k

(|λk(Q
−)|, |λk(Q

+)|) + (μ− + μ+)

(ρ− + ρ+)h
,

here λk are the eigenvalues of the Jacobian matrix of the convective flux and h "— is the distance between
the cell centers. After some transformations, the implicit scheme (3) takes the final form

DiΔUi +
Δt

2|Vi|
∑
l

(
T−1
li ΔFli − v̂liΔUσl(i)

)
|ali| = ΔtRn

i

Di = 1 +
Δt

2|Vi|
∑
l

v̂li|ali|, ΔFli = F1(TliUσl(i) + TliΔUσl(i))− F1(TliUσl(i)), (4)

where Tli is the rotational matrix of the reference frame to the local reference frame for the face l of the
cell Vi, see [7]. The resulting sparse system of linear equations (4) can be solved using the approximate
LU-SGS factorization [1–4].

The system of linear equations (4) can be written in symbolic form as

AΔU = b. (5)

The diagonal of the matrix A contains the quantities Di and all the off-diagonal nonzero elements have
the order Δt. We decompose this matrix into the diagonal one, the strictly lower triangular and strictly
upper triangular matrices: A = L+D + U . Instead of system (5) we consider the system

(D + U)D−1(D + L)ΔU = b+ S, S = LD−1UΔU. (6)

The matrix of this system is the product of the lower triangular, diagonal, and upper triangular
matrices. The quantity S = O(Δt2) is typically neglected. By setting S = 0 we obtain a simplified
system of equations, which is easily solved using the forward and backward elimination.

Backward elimination is given by (i = Ntot, Ntot − 1, . . . , 1)

DiΔU∗
i = − Δt

2|Vi|
∑

l:σl(i)>i

(
T−1
li ΔFli − v̂liΔU∗

σl(i)

)
|ali|+ΔtRn

i . (7)

Forward elimination is given by (i = 1, 2, . . . , Ntot)

DiΔUi = ΔU∗
i −

Δt

2|Vi|
∑

l:σl(i)<i

(
T−1
li ΔFli − v̂ilΔUσl(i)

)
|ali|. (8)

The numerical solution is regarded as convergent to the stationary solution if the norm of the vector
on the right-hand side becomes less than a prescribed small tolerance.

It is obvious that result in (8), (7) depends on cell’s order. Different reordering techniques can be used
for reducing cache misses and accelerating convergence even in serial case, but we will not consider
reordering problem in the present paper.

In program implementation a single array is usually used for both ΔU∗
i and ΔUi. Pseudo-code of

the serial algorithm is the following:
do while (...)

Residual calculation and other stuff
1. backward elimination loop

for i = Ntot, Ntot − 1, . . . , 1

DiΔUi = − Δt

2|Vi|
∑

l:σl(i)>i

(
T−1
li ΔFli − v̂liΔUσl(i)

)
|ali|+ΔtRn

i
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Initial mesh

Processor 1

Inner cells Inner cells

Ghost-interface exchange

Processor 2

Fig. 1. Partition into two blocks, arrows show ghost cell exchange.

end for
2. forward elimination loop

for i = 1, . . . , Ntot

DiΔUi = ΔUi −
Δt

2|Vi|
∑

l:σl(i)<i

(
T−1
li ΔFli − v̂ilΔUσl(i)

)
|ali|

end for

3. PARALLEL VERSIONS OF LU-SGS METHOD
For the sake of simplicity we consider the 1st order scheme. In this case stencil of each cell consists of

all neighboring cells, which share face with current cell. All parallel versions described below are based
on mesh partition into P non-overlapping blocks, where P is the number of processors. We will use the
following notation in order to present pseudo-code for all algorithms in a single form:

• C is set of all cells in the computational mesh. We will also use C for set of all indices assuming
some numeration;

• |C| is number of elements in set C;

• Cp(own) is set of cells belonging to block (processor) p, which is obtained from some non-
overlapping partition algorithm;

• Cp(ghost) is set of ghost-cells of block(processor) p, e.g. cells from other blocks, which are
contained in stencil of cell from block p. For 1st order scheme "— all neighbors of cell from block
p which are not in block p;

• Cp(inner) is subset of cells in Cp(own), such that stencil for cell (set of all neighbors) are
⊂ Cp(own);

• Cp(interface) is subset of cells in Cp, such that at least one neighbor of cell �∈ Cp. It means that
cells in Cp(interface) are ghost cells for some other blocks;

• Cp(all) = Cp(own) ∪ Cp(ghost).

Partition into two blocks is shown schematically on Fig. 1. Arrows show exchange of values in ghost
(interface) cells.

Here and below we assume that in each set of cells some local ordering of cells is introduced. For
instance, pseudo-code “for i ∈ Cp . . .” will denote loop over cells according to this local ordering.

MPI is the standard tool for implementation of distributed-memory algorithm. We will use pseudo-
MPI commands like Send, Receive, Wait in algorithm descriptions omitting details for readability.
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3.1. Naive Parallel Version

The most straightforward simplification of the serial algorithm that allows to extend LU-SGS
method to distributed-memory case is the following: perform loops (7), (8) for each mesh block
separately setting ΔUσl(i) = 0 for all neighbors from other mesh blocks.

Using notation described above algorithm can be represented as follows:
p = my_rank
do while (...)
Residual calculation and other stuff
1. loop over ghost cells
for ip ∈ Cp(ghost) ΔUi = 0 end for
2. backward elimination, loop over cells ∈ Cp(own)

for i = |Cp(own)|, |Cp(own)| − 1, . . . , 1

DiΔUi = − Δt

2|Vi|
∑

l:σl(i)>i

(
T−1
li ΔFli − v̂liΔUσl(i)

)
|ali|+ΔtRn

i

end for
3. forward elimination, loop over cells ∈ Cp(own)

for i = 1, . . . , |Cp(own)|

DiΔUi = ΔUi −
Δt

2|Vi|
∑

l:σl(i)<i

(
T−1
li ΔFli − v̂ilΔUσl(i)

)
|ali|

end for
end while
This naive parallel modification of LU-SGS method needs no data exchange beetween different pro-

cessors (although we indeed need to exchange data to compute residual R(U)). However, convergence
rate remains good only for small number of processors and mesh blocks (when interface cells in block
make up only for small fraction with respect to inner cells). Otherwise, convergence may slow down, or
iterations may indeed diverge [5].

3.2. Jacobi Corrections

Instead of nullifying ΔUi in ghost cells we may use some approximations. One possible way is

to utilize values ΔU
(0)
i = D−1

i ΔtRn
i . We may interpret this as one iteration of Jacobi method for

system (4) with initial guess ΔUi = 0. That is why we refer to procedure as Jacobi corrections.
After LU-SGS step one can exchange ΔUi in boundary cells and perform corrections iteratively [5].
Algorithm looks as follows:

p = my_rank
do while(...)
Residual calculation and other stuff
for i ∈ Cp(ghost)

ΔUi = D−1ΔtRn
i

end for
for m = 1, . . . ,M (Jacobi sweeps)
1. Exchange boundary values
for i ∈ Cp(interface)

Send ΔUi to neighbors
end for
for i ∈ Cp(ghost)

Receive ΔUi from neighbors

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 39 No. 4 2018
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end for
Wait all
2. backward elimination loop over cells ∈ Cp(own)

for i = |Cp(own)|, |Cp(own)| − 1, . . . , 1

DiΔUi = − Δt

2|Vi|
∑

l:σl(i)>i

(
T−1
li ΔFli − v̂liΔUσl(i)

)
|ali|+ΔtRn

i

3. forward elimination loop over cells ∈ Cp(own)

for i = 1, . . . , |Cp(own)|

DiΔUi = ΔUi −
Δt

2|Vi|
∑

l:σl(i)<i

(
T−1
li ΔFli − v̂ilΔUσl(i)

)
|ali|

end for
end while
Jacobi corrections improve robustness of parallel LU-SGS algorithm, but for large number of

processors convergence rate is close to that of Jacobi method, which is very low.

3.3. Mesh-Reordering for Structured Mesh

Two parallel algorithms considered above differ slightly from serial algorithm. More complicated
versions are usually based on some additional mesh decomposition and reordering.

Obvious strategy for structured mesh is to apply a graph coloring to initial mesh. It yields partition
of cells such that all neighbours of cell have different color. In the case of hexahedral mesh one can use
simple “chess board” red-black coloring, see paper [8]. Let us denote set of cells of color k as Ck (and
Ck
p correspondingly). As before we assume that local numbering is introduced inside each subset Ck

p .
Given the colored mesh we can perform standard partition into blocks and then process cells of

one color in parallel with data exchanges for each color. Such operation order guarantees that parallel
algorithm is equivalent to serial one up to corresponding reordering of cells. In detail:

p = my_rank
do while(...)
Residual calculation and other stuff
for k = K,K − 1, . . . , 1 (loop over all colors in inverse order)
1. backward elimination loop over cells ∈ Ck

p (own)

for i = |Ck
p (own)|, |Ck

p (own)| − 1, . . . , 1 ((loop in inverse order))

DiΔUi = − Δt

2|Vi|
∑

l:σl(i)>i

(
T−1
li ΔFli − v̂liΔUσl(i)

)
|ali|+ΔtRn

i

end for
2. Exchange values in ghost cells
for i ∈ Ck

p (ghost)

Receive ΔUi values from neighbors
end for
for i ∈ Ck

p (interface)

Send ΔUi values to neighbors
end for
Wait all
end for
for k = 1, . . . ,K (loop over all colors)
1. forward elimination loop over cells ∈ Ck

p (own)
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for i = 1, . . . , |Ck
p (own)|

DiΔUi = ΔUi −
Δt

2|Vi|
∑

l:σl(i)<i

(
T−1
li ΔFli − v̂ilΔUσl(i)

)
|ali|

2. Exchange values in ghost cells
for i ∈ Ck

p (ghost)

Receive ΔUi values from neighbors
end for
for i ∈ Ck

p (interface)

Send ΔUi values to neighbors
end for
Wait all
end for
Approach based on graph coloring is universal an can be extended, in principle, to the general

unstructured mesh. Yet the practical implementation faces following possible difficulties:
1. For large 3D unstructured mesh of general form consisting of tetrahedrons, hexahedrons, pyramids

and prisms graph coloring require large computational effort;
2. In the case mentioned it is difficult to achieve well balancing. Cells of each color have to be

“uniformly distributed” over all mesh so that all mesh blocks contain approximately equal number of
cells of each color. Otherwise, parallel efficiency will be low due to bad balancing.

4. MULTI-PROCESSOR LU-SGS IMPLEMENTATION
BASED ON MULTILEVEL MESH DECOMPOSITION

Another way to make parallel algorithm equivalent to serial one is to introduce additional recursive
or hierarchical decomposition of mesh. In [9] we proposed a parallel LU-SGS algorithm based on
recursive mesh decomposition which appeared very convenient for shared-memory realization. It has
much in common with parallel nested dissection algorithm [10]. Here we describe its generalization to
distributed-memory case.

The first part of algorithm is a preliminary recursive partition. Let us denote number of partition levels
as K. Partition procedure is the following:

C1 = C
for k = 1, . . . ,K

1. Partition Ck into p blocks Ck
1 (own), . . . , C

k
p (own)

2. For each block compute Ck
p (inner), C

k
p (interface), C

k
p (ghost)

3. Ck+1 =
⋃
p

Ck
p (interface)

end for
It is worth mentioning that at all of the steps we take into account connectivity with cells from current

level Ck only, i.e. consider cutted mesh graph. As an example, sets C2, C3, C4 for mesh partition into
24 blocks are shown in Fig. 2.

After partition is carried out we implicitly reorder cells in the following order:

C1
1 , C

1
2 , . . . , C

1
pmax

, C2
1 , C

2
2 , . . . , C

2
pmax

, . . . , CK
pmax−1, C

K
pmax

Cell ordering in each Ck
p set is arbitrary.

Given such multilevel partition the LU-SGS algorithm has the following form (for brevity we present
only backward elimination):

p = my_rank
do while (...)
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(a) Set of residual cells after 1 partition
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(b) Set of residual cells after 2 partition
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Fig. 2. Set of residual cells after 1, 2 and 3 levels of partition. Initial mesh contains about 106 cells.

Residual calculation and other stuff
if p = 0 (Serial part - executed by one process)

1. for i = |CK+1|, |CK+1| − 1, . . . , 1

DiΔUi = − Δt

2|Vi|
∑

l:σl(i)>i

(
T−1
li ΔFli − v̂liΔUσl(i)

)
|ali|+ΔtRn

i

end for
2. for i ∈ CK+1 (Send computed values to the previous level)
Send ΔUi

end for
end if
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Receive interface values

for i ∈ CK
p (interface)

Receive ΔUi

end for

Wait all

for k = K,K − 1, . . . , 1 (loop over all levels in inverse order)

1. backward elimination loop over cells ∈ Ck
p (inner)

for i = |Ck
p (inner)|, |Ck

p (inner)| − 1, . . . , 1

DiΔUi = − Δt

2|Vi|
∑

l:σl(i)>i

(
T−1
li ΔFli − v̂liΔUσl(i)

)
|ali|+ΔtRn

i

end for

2. Send computed values to the previous level

for i ∈ Ck
p

Send ΔUi

end for

for i ∈ Ck−1
p (interface)

Receive ΔUi

end for

Wait all

end for

Forward elimination . . .

end while

The proposed algorithm is equivalent to the serial LU-SGS algorithm applied to the renumbered
(reordered) mesh. That is why one may hope that all advantages of the original LU-SGS method are
preserved.

Besides, implementation of this algorithm requires only one graph partition procedure, which have to
applied at each level of decomposition. That fact guarantees well-balancing of algorithm for meshes
of any type. In our experiments we used widespread Metis library [11] and ordering-by-adjacency
procedure described in [12].

5. CONCLUSION

We considered different parallel versions of LU-SGS method for solution of the large system of
algebraic equations which arise in finite-volume framework for computational fluid dynamics. The
parallel algorithms was compared in terms of data-structures, data exchanges and implementation
complexity.
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